robotron

Z 1013

Mikrorechnerbausatz

Bedienungsanleitung

VEB Robotron-Elektronik Riesa

Der Herausgeber ist jederzeit für Korrekturhinweise fachlicher, stilistischer und redaktioneller Art dankbar.

Z 1013

Herausgeber:

VEB Robotron-Elektronik Riesa Pausitzer Str. 60 Riesa 8400

© VEB Robotron-Elektronik Riesa

III-6-15

digitalisiert: U.Zander, 2011 <zander@felix.sax.de>

Mikrorechnerbausatz Z 1 0 1 3

Bedienungsanleitung

- Achtung! Die Bedienungsanleitung und das Handbuch für den Mikrorechnerbausatz Z 1013 beziehen sich im wesentlichen auf die Variante Z 1013.01. Für die Variante Z 1013.12 ergeben sich auf Grund des begrenzten Arbeitsspeicher von 1 KByte entsprechende Einschränkungen.
 - Bei Lötarbeiten, außer Anschluß der Tastatur entsprechend Montageanleitung, sowie bei Schäden durch falsche Beschaltung erlischt der Garantieanspruch.
 - Bei Postversand ist der Z 1013 transportsicher zu verpacken.

Inhaltsverzeichnis

Seite

1.	Bedienungsanleitung zum Mikrorechnerbausatz Z1013 2							
1.1.	Vorstellung des MRB Z1013 2							
1.2.	Inbetriebnahme des MRB Z1013 2							
1.2.1.	Anschluß der Stromversorgung 2							
1.2.2.	Anschluß des Fernsehgerätes 3							
1.2.3.	Grundzustand des MRB Z1013 4							
1.2.4.	Anschluß der Tastatur							
1.2.4.1.	Montageanleitung							
1.2.4.2.	Benutzung der Z1013-Tastatur							
1.2.5.	Anschluß eines Magnetbandgerätes							
1.3.	Monitorkommandos des MRB 71013							
1.3.1.	Allgemeine Form							
1.3.2.	Kommandos 8							
1 3 3	Verwendung 12							
1 4	Wichtige Hinweise zur Beibehaltung der							
±••••	Reparaturfähigkeit 19							
1 5	Teghnigghe Daten							
т.э.								

1. Bedienungsanleitung

1.1. Vorstellung des MRB Z 1013

Zur Grundausbaustufe des Mikrorechnerbausatzes gehören eine bestückte Leiterplatte im Format 215 x 230 mm, eine Folienflachtastatur mit den Abmessungen 80 x 160 mm sowie einiges Zubehör, wie ein Stück Bandkabel und ein Paar Flachansteckhülsen.

Die Leiterplatte enthält einen kompletten funktionstüchtigen Mikrorechner auf der Basis des Mikroprozessors U 880 mit allen Steuerungen für das Betreiben von Baugruppen und Geräten, die für die Arbeit mit der Grundausbaustufe notwendig sind.

Als erstes benötigt man ein Eingabegerät, um dem Rechner etwas mitteilen zu können. Dazu dient die Tastatur in Verbindung mit der Ein-/Ausgabesteuerung. Damit auch der Rechner dem Bediener etwas mitteilen kann, braucht man ein Datenanzeigegerät. In unserem Fall ermöglicht eine Bildschirmsteuerung den Anschluß handelsüblichen Fernsehgerätes. Sollen nun eines die dem Rechner mitgeteilten Daten bzw. die von ihm errechneten Daten beim Abschalten der Stromversorgung erhalten bleiben, müssen sie auf ein Magnetband gerettet werden. Deshalb enthält die Grundausbaustufe entsprechende auch eine Steuerung und Anschlußmöglichkeit für Magnetbandgeräte.

Die ungefähre Lage dieser Baugruppen auf der Leiterplatte sowie die Lage der Anschlußpunkte für externe Geräte können der Abbildung 1.1 entnommen werden. Diese Darstellung ist nicht ganz exakt. Sie ist eigentlich als Groborientierung gedacht. einzelnen Die genaue Zuordnung der Schaltkreise zu den Funktionsgruppen ist für das Betreiben der Grundausbaustufe ja auch nicht unbedingt nötig. Diese können Sie aus dem Belegungsplan und den Stromlaufplänen, die Sie im Anhang des Handbuches finden, entnehmen. Was Sie für die Inbetriebnahme tun müssen und für die Arbeit mit der Grundausbaustufe wissen sollten, erfahren Sie in den nächsten Abschnitten. Es werden dann bereits Begriffe benutzt werden, die Kenntnisse auf dem Gebiet der Mikrorechentechnik voraussetzen. Lassen Sie sich dadurch nicht entmutigen. Führen Sie trotzdem die angewiesenen Arbeiten aus und lernen Sie mit dem Rechner umzugehen.

1.2. Inbetriebnahme des MRB Z1013

1.2.1. Anschließen der Stromversorgung

Die Inbetriebnahme des Gerätes erfordert als erstes die Realisierung der Stromversorgung. Um Ihnen das zu erleichtern, befindet sich auf der Leiterplatte der Grundausbaustufe der wesentliche Teil der Stromversorgungsschaltung: die Gleichrichtungs-, Glättungs- und Regelschaltung für alle benötigten Spannungen. Dies sind die Betriebsspannungen +5 V (5P), +12 V (12P) und -5 V (5N).

Sie müssen dieser Schaltung noch eine Wechselspannung zuführen. Diese Spannung muß im Bereich von 11 V bis 12 V liegen. Die Leistungsaufnahme beträgt bis zu 20 W. Diese Wechselspannung kann einem Schutztransformator nach TGL 200-1766 (Schutzkleinspannung) entnommen werden. Ausreichend dafür sind handelsübliche Transformatoren. Bei einer Eigenanfertigung hat unbedingt die Abnahme durch einen Fachmann zu erfolgen. Es ist beim Einsatz auf folgendes zu achten:

Zum sicheren Schutz vor zu hohen Berührungsspannungen ist der Transformator mit einem Gehäuse zu verkleiden, dessen Ausführung einer zulässigen Schutzmaßnahme nach TGL 200-0602 BL. 3 entspricht.

Weiterhin muß der Transformator primärseitig mit einem Funkentstörkondensator nach TGL 11840 (250 V, 100 nF und 2 x 2500 pF) abgeblockt werden, damit eine hochfrequente Abstrahlung von Störspannungen über das 220 V - Netz unterbunden wird.

Die Verbindung des Transformators mit der Leiterplatte geschieht mit Hilfe der beigelegten Plastaderleitung und der Flachsteckhülsen, die an die Leitung angelötet werden.

Achtung: Die Hülsen mit Isolierschlauch oder Isolierband so isolieren, daß sie bei gegenseitiger Berührung oder beim zufälligen Aufliegen auf der Leiterplatte keinen Kontakt geben.

Vor den Anlegen der Stromversorgung müssen Sie unbedingt noch folgenden Hinweis beachten: Legen Sie die Leiterplatte auf eine nichtleitende Unterlage oder schrauben Sie diese mit Hilfe der an Rand der Platte befindlichen Bohrungen und mit Abstandshülsen auf eine Grundplatte. Ansonsten können Kurzschlüsse auftreten, die zur Zerstörung des Rechners führen würden.

Haben Sie alle Hinweise beachtet, stecken Sie die Hülsen an die Flachsteoker X3 (s. Abb. 1.1) an. Ihr Rechner arbeitet bereits.

1.2.2. Anschluß eines Fernsehgerätes

Jetzt wollen wir ein Datensichtgerät anschließen. Dazu benötigen Sie ein Fernsehgerät beliebigen Typs und ein handelsübliches Koaxialkabel mit Koaxialsteckern an beiden Enden. Dieses Kabel stecken Sie in die Antennenbuchse für den VHF-Bereich Ihres Fernsehgerätes. Auf der Leiterplatte des vor Ihnen liegenden Z 1013 befindet sich an der Abschirmung des HF-Modulators (s. Abb. 1.1) eine Koaxialbuchse. An dieser Bildschirmsteuerung Stelle wird die von der erzeuqte Bildinformation in Form eines normgerechten Fernsehsignals zur Verfügung gestellt. Hier stecken Sie das andere Ende des Verbindungskabels an.

An dieser Stelle ist ein Hinweis notwendig, dem Sie unbedingt Folge zu leisten haben. Wenn Sie den MRB Z 1013 mit ihrem Fernseher verbinden, darf dies nur zur persönlichen Nutzung und nur mit dem dafür vorgesehenen Verbindungskabel geschehen. Anderes mißbräuchliches Betreiben wird entsprechend Paragraph 63 des Gesetzes über das Post- und Fernmeldewesen geahndet.

Nach Herstellen der Verbindung müssen Sie noch den Kanal 3 einstellen, bis ein scharfes, stehendes Bild entsteht. Jetzt sehen Sie ein quadratisches Bild. Wenn Sie sich das etwas genauer ansehen, werden Sie erkennen, daß sich das Bild aus einzelnen Zeichen zusammensetzt, Sie werden weiter feststellen, daß diese Zeichen in 32 Zeilen angeordnet sind, wobei in einer Zeile wiederum 32 Zeichen getrennt werden können.

Aus den Vergleich einzelner Zeichen ist zu ersehen, daß ein Zeichen nie aus mehr als 8 x 8 Bildpunkten besteht. Welche Zeichen das im einzelnen sind, die mit der Grundausbaustufe auf dem Bildschirm abgebildet werden können, ist der Anlage 7 des Handbuches zu entnehmen. Einen großen Teil können Sie auch unmittelbar mit der Tastatur zur Darstellung bringen. Lesen Sie dazu weiter.

1.2.3. Grundzustand des MRB Z 1013

Betätigen Sie jetzt die RESET-Taste auf der Leiterplatte. Es wird dann der Bildschirm gelöscht und am oberen Bildrand erscheint die Ausschrift "robotron Z 1013/2.02" und in der nächsten Zeile ein Doppelkreuz als Zeichen einer ordnungsgemäßen Funktion, sowie nach einer Lücke ein volles Kästchen.

Anzeige des Grundzustandes:

robotron Z 1013/2.02 # ■

Die Ausschrift in der ersten Zeile zeiqt immer den Grundzustand des Rechners an. Das Doppelkreuz wird als Quittungs- oder Promptsymbol bezeichnet und bedeutet, daß der Rechner jetzt auf eine Eingabe von der Tastatur wartet. Das nachfolgende Zeichen, die Lücke, nennt man Leerzeichen oder "Space".

Das volle Zeichen '■' wird hier als Kursor genutzt. Der Kursor zeigt immer die Position auf dem Bildschirm an, wo das nächste einzugebende Zeichen dargestellt wird.

Das Gesagte wird leichter verständlich, wenn wir nun die Tastatur anschließen und damit umzugehen lernen.

1.2.4. Anschluß der Tastatur

1.2.4.1. Montageanleitung

Vor Ausführung der Montage beachten Sie bitte unbedingt die Hinweise in 1.4., um die Reparaturfähigkeit des Z 1013 zu erhalten! Für den Anschluß der Tastatur entnehmen Sie aus der Verpackung die Folienflachtastatur und das Stück Bandkabel. Dann vereinzeln Sie die Adern der Bandleitung in einer Länge von ca. 3 cm auf beiden Seiten, entfernen dann jeweils ca. 5 mm die Isolierung und verzinnen die Enden. An einer Seite sind die verzinnten Drähte dann auf 1 bis 2 mm zu kürzen und unter Verwendung von Lötzinn mit Kolophonium entsprechend der Abb. 1.2 auf der Rückseite der Tastatur (Drähte nicht in die Bohrungen in Tastaturplatine stecken!) anzulöten. An der anderen Seite des Bandkabels kürzen Sie die Drähte auf 2 bis 3 mm, löten diese auf der Unterseite der Leiterplatte an den vorgeschriebenen Lötaugen (nicht am Prüfkamm!) an. Dazu muß sich der Z 1013 im stromlosen Zustand befinden.

Achtung! Nur Lötkolben mit max. 30 Watt Heizleistung bei max. 3 s Lötdauer verwenden.

Es empfiehlt sich, an den Lötstellen für eine Zugentlastung zu sorgen, um Leitungsbruch zu vermeiden. Sollten Sie Ihren MRB Z 1013 auf einer Grundplatte aufgeschraubt haben, ist es ratsam, die Tastatur ebenfalls darauf zu befestigen, so daß häufiges Bewegen des Kabels vermieden wird. Ist diese Arbeit beendet, lesen Sie bitte weiter.

1.2.4.2. Benutzung der Z 1013 Tastatur

Schauen Sie sich jetzt einmal die Tastatur etwas genauer an. Sie sehen dann, daß die oberen drei Tastenreihen alle eine mehrfache Beschriftung tragen und die unteren nur eine einfache (s. Abb. 1.3).

Durch die Organisation der Tastatur in vier Zeilen und acht Spalten könnten theoretisch 32 verschiedene Tasten realisiert werden. Für eine alphanumerische Tastatur ist das aber zu wenig. Aus diesem Grund wurden einige Tasten mit einer Umschaltfunktion belegt (Shift: S1, S2, S3 und S4), damit sind die anderen Tasten mehrfach nutzbar. Diese Mehrfachbelegung ist auf dem jeweilgen Tastenfeld angegeben.

Eine Besonderheit der Folientastatur ist die kaum wahrnehmbare Auslösung des gewünschten Zeichens. Deshalb muß man schon sehr genau die Reaktion den Mikrorechners verfolgen, um die erfolgreiche Betätigung der Tasten eindeutig zu registrieren. Wenn man sich an die Verwendung der Folienfalchtastatur gewöhnt hat, tritt dieser Nachteil kaum noch in Erscheinung

Befindet sich der Rechner im Grundzustand, können Sie jetzt den Umgang mit der Tastatur üben:

- 1. Betätigen Sie der Reihe nach oben links beginnend alle Tasten. Was beobachten Sie? Zunächst erscheinen auf dem Bildschirm 24 Zeichen.
 - # BABCDEFGHIJKLMOPORSTUVW

Die Zeichen werden immer an der Stelle abgebildet, wo vorher der Kursor stand. Beim Drücken von S1 bis S4 passiert nichts auf dem Bildschirm, aber bei <-- bewegt sich der Kursor eine Stelle nach links. Nach Drücken von ' ' wird an diese Stelle ein Leerzeichen geschrieben und nach --> wandert der Kursor eine Position nach rechts. Das Betätigen der Taste Ent (Enter) bewirkt die Abbildung eines Fragezeichens (?), da die Zeichenkette in den internen Kode umgewandelt und für den Rechner ohne Sinn ist; sowie eines Doppelkreuzes und Kursor, als Aufforderung einer erneuten Eingabe.

2. Betätigen Sie jetzt die Taste S1 und gleichzeitig die Tasten der oberen drei Reihen in der gleichen Reihenfolge wie oben und anschließend Ent. Es erscheint das Bild

```
# XYZ[/]^_0123456789:;<=>?
? # ■
```

3. Drücken Sie jetzt S3 und die Tasten wie oben. Das Fernsehbild sieht nun folgendermaßen aus

```
# 'abcdefghijklmnopqrstuvw
? # ■
```

4. Es werden S2 und wieder die Tasten wie oben betätigt.

```
# xyz{:}~■!"#$%&?()*+,-./
? # ■
```

- 5. S4 hat unter den Shift-Tasten wieder eine besondere Bedeutung:
 - S4 T Bildschirm gelöscht. Kursor oben links auf dem Bildschirm
 - S4 U wirkt wie Enter. Es erscheint 🔗 🛱 🔳
 - S4 P Kursor bewegt sich nach links.
 - S4 Q Kursor bewegt sich nach rechts.
 - S4 G Die Belegung der Tastatur wird geändert. Wiederholt man jetzt die Übungen 1 bis 4, werden nicht mehr die alphanumerischen Zeichen, sondern Grafikzeichen abgebildet.
 - S4 A Damit wird wieder in den Alpha-Modus umgeschaltet, d.h., die Bedeutung der Tasten ist wieder die ursprüngliche.

1.2.5. Anschluß eines Magnetbandgerätes

Mit dem Magnetbandgerät können Sie Informationen (z. B. Programme), die Sie in den Rechner eingeben, speichern und wieder einlesen. Sie können die auf der Kassette aufgezeichneten Programme aufbewahren und später, wenn Sie diese Programme wieder verwenden möchten, von der Kassette in den Speicher des MRB Z 1013 laden.

Als Magnetbandgerät können Sie sowohl Kassettenmagnetbandgeräte als auch Spulentonbandgeräte verwenden. Voraussetzungen sind

- das Vorhandensein einer kombinierten Aufnahme-/Wiedergabebuchse mit einer Kontaktbelegung nach TGL 28200/05: Kontakt 1 = Eingang U = 60 bis 100 mV (vom MRB Z 1013) Kontakt 3 = Ausgang U >= 120 mV
- die F\u00e4higkeit, hohe Frequenzen (f >=8 kHz nach TGL 27616/2) einwandfrei wiederzugeben,
- die einwandfreie Funktionsfähigkeit des von Ihnen eingesetzten Gerätes, d. h. keine schwankende Wiedergabe der höheren Frequenzen.

Zu empfehlen sind die Kassettenrekorder GERACORD, ANETT, KR 650/660 u. ä., sowie alle Spulentonbandgeräte für Mono. Sollten Sie ein Stereogerät verwenden, nutzen Sie nur eine Spur für die Aufnahme. Nicht einsetzen können Sie den Rekorder SKR 900.

Einige technische Besonderheiten sollte Ihr MBG noch besitzen:

- Aussteuerautomatik bzw. Handaussteuerung mit Aussteuerungsanzeige, um optimale und konstante Aufzeichnungspegel zu ermöglichen. Geräte mit Handaussteuerung haben noch den Vorteil, daß Sie die Aussteuerung für eine sichere Aufzeichnung durch Probieren ermitteln können. So können Sie Magnetbandgeräte, die bei automatischer Aussteuerung nicht funktionieren, durch Übersteuerung verwendungsfähig machen.
- Bandlängenzählwerk, damit Sie die Bandstelle mit Ihrem gewünschten Programm schneller finden. Ist dies nicht vorhanden, helfen Sie sich durch Aufsprechen eines Programmnamens, den Sie dann durch Abhören wiederfinden können.

Wie das MBG zur Informationsspeicherung genutzt wird, können Sie am Beispiel des Abschnittes 1.3 üben. Aber anschließen wollen wir es jetzt schon. Dazu wird das MBG über ein handelsübliches Diodenkabel (Achtung! kein Überspielkabel) mit der Buchse X5 (s. Abb. 1.1) verbunden. Anschließend legen Sie noch eine Kassette ein bzw. legen ein Band auf. Nun ist Ihr Heimrechenzentrum fertig. In den nächsten Abschnitten soll gezeigt werden, wie Sie damit umgehen müssen.

1.3. Monitorkommandos des Z 1013

1.3.1. Allgemeine Form

Nach erfolgreicher Inbetriebnahme des Mikrorechners, ein ordnungsgemäßer Anschluß der Geräte vorausgesetzt, wird, durch Aufforderungszeichen "#" signalisiert, eine das Bedienereingabe erwartet. Dieses Zeichen gibt an, daß sich der Progammabarbeitung Mikrorechner mit der im sogenannten Betriebsprogramm (Monitor) befindet. In diesem Monitor sind alle Befehlsfolgen enthalten, die unbedingt benötigt werden, um mit dem Mikrorechner arbeiten zu können. Diese Monitorleistungen sind mit Kommandos abrufbar.

Im folgenden soll, von der allgemeinen Form der Kommandos ausgehend, der Monitor vorgestellt werden.

Die allgemeine Form der Kommandos lautet:

XY aaaa bbbb cccc (ENTER)

Dabei bedeuten:

 X : ASCII-Zeichen (ASCII-Zeichen: Zeichen, die im Alpha-Modus von der Tastatur geliefert werden; s. 1.2.4.2)
 Y : Leerzeichen aaaa bbbb cccc: eventuell vorhandene Parameter ENTER: Abschluß mit der Enter-Taste

Die Parameterangaben sind vom jeweiligen Kommando abhängig. Es sind maximal drei vierstellige Hexadezimalzahlen (siehe dazu Abschn.1.3.2.) möglich. Die Eingabe führender Nullen ist nicht erforderlich. Fehlerhafte Werte der Kommandozeile können korrigiert werden, dazu ist mit den beiden Kursortasten "Kursor links '<-'" und "Kursor rechts '->'" auf der Tastatur der Kursor auf das fehlerhafte Zeichen zu positionieren und die Korrektur auszuführen.

Vor Betätigung der Enter-Taste ist der Kursor wieder hinter das letzt gültige Zeichen zu positionieren. Sofern die Kommandozeile richtig eingegeben wurde, wird das Kommando ausgeführt. Bei fehlerhaften Kommandozeilen wird ein Fragezeichen und anschließend wieder ein Aufforderungszeichen ausgegeben. Falls die Parameterangaben eines Kommandos denen des vorherigen entsprechen, kann eine Neueingabe entfallen und mit dem Zeichen ":" auf diese Parameter verwiesen werden.

1.3.2. Kommandos

In diesen Abschnitt sollen die Kommandos geordnet in alphabetischer Reihenfolge genannt werden und ihre Wirkung beschrieben werden. Lesen Sie zunächst diesen Abschnitt, auch wenn nicht alles klar wird. Im nachfolgenden Abschnitt sollen diese geübt werden. Monitorkommandos:

- A (Alphaumschaltung)
 Schaltet die Tastatur wieder in den Grundzustand, sofern sie vorher mit dem Kommando "H" umgeschaltet war.
- B hadr (Breakpoint-Haltepunkt)

Es wird eine Haltepunktadresse eingegeben. Diese Adresse muß im RAM-Bereich liegen und auf das erste Byte eines Befehles zeigen. Zur Kontrolle wird der eingetragene Haltepunkt BP.:..., die dort befindlichen Befehlsbytes BS.:... sowie alle Registerinhalte angezeigt. Ein zu testendes Programm hält beim Erreichen dieser Adresse an und gibt eine Reihe von Informationen aus. Das sind wieder die Haltepunktadresse sowie die ab dieser Adresse stehenden Befehlsbyte und alle Registerinhalte. Danach werden Monitorkommandos erwartet. Voraussetzung ist, daß die Haltepunktadresse auf das erste Byte eines Befehls zeigt.

- C adr1 adr2 anz (Compare)

Dieses Kommando wird genutzt, um zwei Speicherbereiche miteinander zu vergleichen. Sind die Speicherbereiche gleich, meldet sich wieder der Monitor. Bei Ungleichheit erfolgt eine Fehlerausschrift in der Form: aaaa xx bbbb yy, wobei aaaa und bbbb Adressen und xx und yy deren Byteinhalte darstellen, zwischen denen die Ungleichheit besteht. Mit Betätigen der Entertaste wird der Vergleich fortgesetzt, eine andere Taste bricht den Vergleich ab.

- D aadr eadr (Display Memory)

Mit diesem Kommando können beliebige Speicherbereiche zwischen einer Anfangs- und einer Endadresse angezeigt werden. Die Anzeige des Bereiches zwischen FFF8 und FFFF ist mit dem D-Kommando nicht möglich, dafür muß das M-Kommando verwendet werden. Die Anzeige erfolgt zeilenweise in hexadezimaler Form. Zuerst wird die Adresse des jeweiligen Bereiches ausgegeben, danach folgen acht Byte des Speicherinhaltes, gefolgt von einer dreistelligen Prüfsumme. Es wird immer eine Zeile vollständig ausgegeben, auch wenn die Endadresse eine andere Anzahl von Bytes verlangt.

- E sadr (Execute)

Es wird ein Maschinenprogramm ab der eingegebenen Startadresse unter Beachtung einer eventuell eingegebenen Haltepunktadresse gestartet. Zu Beginn werden alle Register der CPU mit definierten Inhalten aus dem Registerrette-Bereich geladen. Mit Erreichen eines Haltepunktes werden die CPU-Register im Registerrette-Bereich gespeichert und in den Monitor verzweigt. Eine Programmfortsetzung des zu testenden Programmes kann auf mehreren Wegen erfolgen:

- * Festlegen eines neuen Haltepunktes mit dem B-Kommando und Fortsetzung mit dem G-Kommando (siehe dort)
- * Schrittweise Abarbeitung mit dem N-Kommando (s. d.)
- * Fortsetzung mit dem G-Kommando ohne Neufestlegung eines Haltepunktes
- F aadr anz aa bb cc .. (Find) Ab der angegebenen Adresse soll eine bestimmte Anzahl aufeinanderfolgender Bytes im Speicher gesucht werden. Werden diese Bytes gefunden, erfolgt ein Übergang zum M-Kommando, die Bytes können gelesen und/oder verändert werden. Wird die Bytefolge nicht gefunden, erfolgt die Ausschrift "NOT FOUND" auf dem Bildschirm.
- G (Go) Fortsetzung eines Programmes ab der Haltepunktadresse.
 Zuvor werden die geretteten CPU-Register wieder geladen.
 Das G-Kommando kann auch nach dem Schrittbetrieb gegeben werden. Wurde zuvor mit dem B-Kommando ein neuer Haltepunkt eingegeben, läuft das zu testende Programm bis zu dieser neuen Haltepunktadresse.
- H (Hexadezimalumschaltung)
 Schaltet in der Tastaturkodetabelle die Zahlen 0 bis 9 sowie die entsprechenden Sonderzeichen in die Shiftebene 0, d. h. anstelle der Zeichen "H" bis "Q". Dadurch sind hexadezimale Eingaben ohne Benutzung der Shift-Taste möglich.

 - I (Initialisierung)
 Es erfolgt ein Löschen des Registerrette-Bereiches, so daß nach Programmstart mit dem E-Kommando die CPU-Register mit definierten Anfangswerten geladen (gelöscht) werden. Der weitere Ablauf ist wie nach Betätigen der Reset-Taste, es wird der Grundzustand des Mikrorechners hergestellt.

- J sadr (Jump)

Es wird ein Programm ab der Startadresse aktiviert, eine eventuell eingegebene Haltepunktadresse wird nicht beachtet, die Inhalte der CPU-Register sind undefiniert.

- K aadr eadr bb (Kill)

Damit ist es möglich, einen angegebenen Speicherbereich zu löschen oder mit dem Byte bb zu füllen. Wird das Kommando ohne Parameter verwendet, wird der gesamte adressierbare Speicher gelöscht. Weiterarbeit ist dann nur nach Betätigen der Reset-Taste möglich.

- L aadr eadr (Load from Cassette)

Ein mit dem S-Kommando ausgegebener Speicherbereich kann mit diesem Kommando wieder geladen werden. Dabei werden die ankommenden Byte ab der Anfangsadresse bis zur Endadresse im Speicher plaziert. Diese Adressen müssen nicht mit denen des S-Kommandos identisch sein, wichtig ist nur die Übereinstimmung der Byteanzahl. Während des Lesens wird mittels der aufgezeichneten Prüfsumme die Richtigkeit der ankommenden Daten kontrolliert. Stimmen errechnete und vom Band gelesene Prüfsumme nicht überein, wird eine Fehlermeldung ausgegeben: CS<aerr. Der fehlerhafte Bereich unterhalb der Adresse aerr muß dann manuell kontrolliert werden. Möglicherweise ist auch nur die Prüfsumme falsch gelesen worden. Reicht die Anzahl der eingelesenen Bytes nicht aus, den Speicher bis zur Endadresse zu füllen, bleibt das Programm in der Eingabe hängen, der Monitor kann nur wieder mit der Reset-Taste erreicht werden.

- M aadr (Modify)

Es ist möglich, mit diesem Kommando einen Speicherbereich ab der angegebenen Anfangsadresse byteweise anzuzeigen und gegebenenfalls zu verändern. Es erfolgt die Ausgabe der aktuellen Adresse und des Inhaltes des zugehörigen Bytes. Anschließend wird mit dem Zeichen "#" zur Eingabe aufgefordert. Soll der alte Inhalt beibehalten werden, ist nur die Enter-Taste zu betätigen, ansonsten wird vorher eine hexadezimale Zahl eingegeben. Es können auch mehrere Byteinhalte, durch Leerzeichen voneinander getrennt, eingegeben werden.

Nach Betätigung der Enter-Taste wird die aktuelle Adresse erhöht und auf der nächsten Zeile fortgesetzt. Wird versucht, einen nicht vorhandenen Speicherbereich oder einen ROM zu beschreiben, erfolgt eine Fehlerausschrift: ER aerr bb, wobei aerr die Adresse und bb den fehlerhaften Inhalt darstellen. Anschließend wird eine erneute Eingabe erwartet. Diese Fehlerausschrift wird vor allem dann auftreten, wenn versucht wird, nicht vorhandene Speicher oder Festwertspeicher zu beschreiben. Mit Eingabe des Zeichens "R" kann die aktuelle Adresse bei Bedarf zurückgestellt werden.

Die Kommandoausführung wird beendet durch Eingabe eines Semikolon ";". Die aktuelle Adresse wird als Endadresse übernommen. Mit dem Kommando 'D :' kann der aktualisierte Speicherbereich nochmals auf dem Bildschirm angezeigt werden.

- N (Next)

Dieses Kommando veranlaßt die Ausführung genau eines Befehls des zu testenden Programmes (Schrittbetrieb). Das N-Kommando kann nur angewandt werden, wenn zuvor ein Haltepunkt gesetzt und das zu testende Programm mit dem E-Kommando gestartet wurde. Nach der Ausführung des Befehls werden alle Registerinhalte gerettet. Angezeigt werden der Befehlszähler, die abzuarbeitenden Befehlsbyte sowie alle Registerinhalte. Während des Schrittbetriebes dürfen in dem zu testenden Programm keine der nachfolgenden Befehle auftreten:

'IMO', 'IM1'	– Veränderung im Interruptmodus
'LD I, A'	- Veränderung des Interruptvektors in der
	CPU
'DI'	- Verbieten Interrupt

- R rg/rg' (Register Display/Modify)

Mit diesem Kommando ist es möglich, Inhalte beliebiger Doppelregister der CPU einschließlich des Austauschregistersatzes anzuzeigen und zu verändern, Nach Eingabe der Registerbezeichnung (AB, DC, DE, HL, IX, IY, PC, SP, AF', BC', DE', HL') wird der Inhalt des ausgewählten Doppelregisters ausgegeben und mit den Zeichen "#" die Eingabe des neuen Wertes erwartet. Wird an Stelle einer Registerbezeichnung ein Doppelpunkt ":" eingegeben, werden alle Registerinhalte angezeigt.

BP:XXXX BS:XXXXXX S Z C X X X SP:XXXX PC:XXXX IX:XXXX IY:XXXX AF:XXXX BC:XXXX DE:XXXX HL:XXXX AF:XXXX BC:XXXX DE:XXXX HL:XXXX'

Zu beachten ist, daß nur das S-, Z- und C-Flag einzeln angezeigt wird, die Belegung der anderen Flags ist dem AF-Register zu entnehmen.

- S aadr eadr (Save to Cassette) Der Speicherbereich von Adresse aadr bis zur Adresse eadr wird über das Magnetbandinterface auf Magnetband ausgegeben. Nach einem etwa 1,5 Sekunden langen Kennton werden die Daten in Blöcken zu 32 Byte mit einer anschließenden Prüfsumme pro Block ausgegeben.
- T aadr zadr anz (Transfer)
 Es erfolgt ein Transport eines Speicherbereiches ab der Anfangsadresse auf eine Zieladresse mit der festgelegten Anzahl von Bytes. Dabei ist eine Überlappung der beiden Bereiche möglich.
- W aaaa eeee (Window)

Dieses Kommando realisiert eine Fensterfunktion, innerhalb dessen die Rollfunktion des Bildschirms erhalten bleibt. Außerhalb dieses Fensters wird die Bildschirmausgabe als Standbild realisiert. Der Anfang des Fensters wird mit dem Parameter aaaa, dessen Ende mit eeee festgelegt. Der kleinste realisierbare Fensterausschnitt besteht aus zwei Zeilen. Sollen nur die letzten beiden Zeilen rollen, sind als Parameter die Angaben aaaa=EFC0 und eeee=EFFF+1=F000 notwendig. Der volle Bereich wird durch die Parameter aaaa=EC00 und eeee=EFFF=F000 eingestellt. Der Bildschirm wird nicht gelöscht, der Kursor wird an den Anfang des Fensters positioniert.

1.3.3. Verwendung der Monitorkommandos

Anhand eines Beispielprogrammes wollen wir jetzt alle Monitorkommandos trainieren. Das Beispiel wurde so gewählt, daß Sie das ordnungsgemäße Arbeiten des Programmes auf dem Bildschirm verfolgen können. Mit Hilfe des Programmes werden die schwarzen Schachfiguren in der Bildschirmmitte abgebildet. Programm:

Adresse	Mas	schi	ner	nkode	Mne	emon	ik	Kc	ommentar
1000	06	06			LD	В,	б	;	Zahl der Schachfiguren
1002	DD	21	08	EE	LD	IX,	EE08H	;	Position der ersten Fi-
								;	gur auf Bildschirm (BS)
1006	11	1C	10		LD	DE,	101CH	;	Adresse der Tabelle für
								;	Zeichenkode der Schach-
								;	figuren
1009	1A			Ml:	LD	Α,(DE)	;	oberen Teil der Schach-
100A	DD	77	00		LD	(IX	Ξ+0),A	;	figur auf BS
100D	13				INC	DE	1	;	nächsten Zeichenkode
100E	1A				LD	A,	(DE)	;	unteren Teil der Schach-
100F	DD	77	20		LD	(IX	(+20),	\;	figur auf BS
1012	13				INC	DE	1	;	nächsten Zeichenkode
1013	DD	23			INC	! IX		;	Abstand zum nächsten
1015	DD	23			INC	! IX		;	Zeichen einstellen
1017	DD	23			INC	! IX		;	
1019	10	ΕE			DJN	IZ M	1	;	nächste Figur, bis alle
								;	6 abgebildet
101B	$\mathbf{F}\mathbf{F}$				DB	FFH	[;	Rücksprung in Monitor
101C	0E	11	0F	11				;	Tabelle für Zeichenkode
1020	10	11	12	13				;	der Schachfiguren
1024	14	16	15	16					

Falls Sie nicht alles verstanden haben, machen Sie trotzdem weiter mit. Die Wirkungsweise der Kommandos wird auch so deutlich. Sie können dann beim Erlernen der Maschinensprache immer das Gelernte am Rechner ausprobieren.

Da Sie beim Eingeben des Programmes vorwiegend Hexadezimalzahlen (siehe Abschn.2.4.1.) benutzen, schalten Sie als erstes die Tastatur durch Betätigen der Tasten 'H' und 'ENT' um. Jetzt müssen Sie beim Eingeben eines alphanumerischen Zeichens, wie z.B. die Monitorkommandos, immer gleichzeitig 'S1' drücken.

Zunächst geben Sie das Programm ab Adresse 1000H ein.

Eingabe:

'S1' und 'M' ' ' '1' '0' '0' '0' 'ENT'

BS:

M 1888 1888 # ■

Jetzt tippen Sie die Zahlen aus der Spalte Maschinenkode paarweise mit jeweils einem Leerzeichen ein und schließen Sie diese mit ';' ab. Eingabe:

'0' '6' 'ENT' '0' '6' ' 'D' 'D' ' '2' '1' 'ENT' ... 'ENT' '1' '5' ' '1' '6' ';' 'ENT'

Sie bemerken, Sie können anstelle des Leerzeichens auch 'ENT' drücken, dann erfolgt die weitere Eingabe immer auf der nächsten Zeile.

Bildschirm:

1000 ×× # 06 1001 ×× # 06 DD 21 . . 1026 ×× # 15 16; # ■

Führen Sie jetzt eine Kontrolle Ihrer Eingabe durch folgende Aktivität durch:

Eingabe:

'D' ' ' '1' '0' '0' '0' ' ' '1' '0' '2' '0' 'ENT'

BS:

# 0	100	30 :	1820	3						
1000	86	86	$\Box\Box$	21	88		11	10	220	
1998	10	18	$\square\square$	77	88	13	18		288	
1010	77	20	13	DD	23	DD	23		387	
1918	23	10		FF	ØE	11	ØF	11	25F	
1020	10	11	12	13	14	16	15	16	09B	

Stimmt Ihr Ergebnis mit dem hier angegebenen überein?

Sie brauchen dafür nur die letzte Spalte mit den dreistelligen Ziffern, der sogenannten Prüfsumme, zu vergleichen. Wenn Sie das Programm an einer anderen Stelle im Speicher haben wollen, können Sie es auch in einen anderen Bereich transportieren, z. B. auf die Adresse 2000. Das Programm umfaßt 28H, d.h. dezimal 40, Speicherplätze.

Eingabe:

'S1' und 'T' ' '1' '0' '0' '0' ' '2' '0' '0' '0' ' ' '2' '8' 'ENT'

BS:

T 1000 2000 28 # ■

Kontrollieren Sie die Ausführung des Transports, indem Sie den Speicherbereich ab Adresse 2000H anzeigen.

Eingabe:

'D' ' ' '2' '0' '0' '0' ' ' '2' '0' 'ENT'

BS: wie oben, aber vorn die aktuellen Adressen

Sie können den Vergleich auch mit dem C-Kommando den Rechner selbst ausführen lassen.

Eingabe:

'C' ' ' '1' '0' '0' '0' ' ' '2' '0' '0' '0' ' '2' '8' 'ENT'

BS:

C 1000 2000 28 # ■

Die 40 Speicherplätze ab Adresse 1000H und die ab Adresse 2000H stimmen überein, da sonst die Stelle, ab der Ungleichheit herrscht, angezeigt werden würde.

Wollen Sie jetzt einen bestimmten Befehl ändern, dann lassen Sie diesen vom Rechner suchen, und zwar mit dem F-Kommando. Ändern Sie Jetzt den Befehl LD DE, 101CH (Maschinenkode: 11 1C 10) in dem Bereich ab Adresse 2000H.

Eingabe:

'F' ' '2' '0' '0' '0' ' '3' ' '1' '1' '1' 'C' ' '1' '0' 'ENT' 'ENT'

BS:

2006 11 # 2007 1C # **■**

Der nächste Speicherplatz soll in 20 geändert werden.

Eingabe:

'ENT' '2' '0' ';' 'ENT'

Nun haben Sie ab Adresse 1000H und ab Adresse 2000H jeweils ein lauffähiges Programm. Um dessen Wirkung besser verfolgen zu können, löschen wir den Bildschirm mit dem K-Kommando.

Eingabe:

'S1' und 'K' ' ''E' 'C' '0' '0' ' 'E' 'F' 'F' 'F' ' '2' '0' 'ENT'

Die Adressen EC00H und EFFFH schließen den Bildschirmbereich ein, 20H ist der hexadezimale Kode für das Leerzeichen. Sie können für den Leerzeichenkode auch den für das A, also 41H, eingeben. Sie füllen also den Bereich mit Leerzeichen.

BS:

■ (in der letzten Zeile)

Jetzt starten Sie das Programm ab Adresse 1000H.

Eingabe:

'S1' und 'J' ' '1' '0' '0' '0' 'ENT'

BS:

Schachfiguren in der Bildmitte

Wir wollen jetzt die Arbeitsweise des Programmes schrittweise verfolgen, was bei selbsterstellten, eventuell noch fehlerhaften Programmen vorteilhaft ist. Dazu stellen wir mit dem I-Kommando den Grundzustand ein.

Eingabe:

'H' 'ENT' 'S1' und 'I' 'ENT'

BS: Grundzustand

Wir schalten wieder in den Hexa-Modus um. Da bei schrittweiser Abarbeitung die Änderung der Registerinhalte Aufschluß über die richtige Ausführung der Befehle gibt, sind mit dem R-Kommando die Register darstellbar und änderbar.

Eingabe:

'S1' und 'R' ' ' ':'

BS:

BP: XXXX BS: XXXXXX S Z C 0 0 0 SP: 0090 PC: 0000 IX: 0000 IY: 0000 AF: 0000 BC: 0000 DE: 0000 HL: 0000 AF: 0000 BC: 0000 DE: 0000 HL: 0000'

Das Programm soll nach Abbildung, der ersten Schachfigur unterbrochen werden, also bei Adresse 1012H.

Eingabe:

'B' ' ' '1' '0' '1' '2' 'ENT'

Anzeige:

BP: 1012 BS: 13 DD 23 alle Register wie oben

Nun müssen Sie das Programm mit dem E-Kommando starten.

Eingabe:

'E' ' ' '1' '0' '0' 'ENT'

BS: 1 Bauer in BS-Mitte im Zeichengewirr

Damit der Programmablauf weiter verfolgt werden kann, richten wir uns auf dem Bildschirm ein Anzeigefenster ein, in dem alle von Ihnen gemachten Eingaben angezeigt werden. Die Anzeige soll nur noch im unteren Viertel des Bildschirmes erfolgen. Das entspricht dem Speicherbereich EF00H bis EFFFH.

Eingabe:

'S1' und 'I' 'ENT' 'H' 'ENT' 'S1' und 'W' ' ' 'E' 'F' 'O' '0' ' ' 'E' 'F' 'F' 'ENT'

BS:

H # W EF00 EFFF # ■ (am Beginn des unteren Viertels)

So, nun geben Sie wieder den Abbruchpunkt ein und starten wieder mit dem E-Kommando.

Eingabe:

'B' ' '1' '0' '1' '2' 'ENT' (-->Registeranzeige) 'E' ' '1' '0' '0' 'ENT'

BS:

 Bauer in Bildmitte
 unteres Viertel: # E 1000 Registeranzeige

Jetzt können Sie das Programm Befehl für Befehl mit dem N-Kommando abarbeiten, indem Sie wiederholt 'S1' und 'N' sowie 'ENT' drücken. Damit Sie nicht immer drei Tasten drücken müssen, schalten Sie die Tastatur wieder in den Alpha-Modus zurück.

Eingabe:

'A' 'ENT'

BS:

A # ■

Fahren Sie nun mit 'N' und 'ENT' fort. Sie können in der Anzeige die Änderung des Abbruchpunkte (BP) sowie die der im Programm verwendeten Register DE, IX und BC verfolgen. In der Bildschirmmitte werden nach und nach die Schachfiguren aufgebaut. Ist das Programm vollständig durchlaufen, erscheint auf dem Bildschirm:

BS:

2 🗄 🗖

Sie haben nun ausführlich mit den Monitorkommandos gearbeitet und wollen die Arbeit zunächst beenden. Damit Ihr Programm nicht verloren geht, speichern Sie dieses mit Hilfe des S-Kommandos auf einem Magnetband:

Eingabe:

'H' 'ENT' 'S1' und 'S' ' ' '1' '0' '0' '0' ' ' '1' '0' '3' '0'

Aufnahmebereitschaft des Magnetbandgerätes herstellen; Aufnahme starten

'ENT '

BS:

? # H # S 1000 1030

Sie hören jetzt zunächst einen längeren Signalton und anschließend ein knarrendes Geräusch. Das Programm befindet sich auf Magnetband, wenn auf dem Bildschirm wieder das Quittungssymbol '#' erscheint. Sie können jetzt alles ausschalten.

Üben Sie noch das Einlesen eines Programmes vom Magnetband. Schalten Sie Ihren MRB Z1013 noch einmal an und gehen Sie folgendes ein:

Eingabe:

```
'H' 'ENT'
'S1' und 'L' ' '1' '0' '0' '0' ' '1' '0' '3' '0'
```

Magnetband an den Programmanfang, entsprechend des von Ihnen notierten Bandzählerstandes, zurückspulen; Wiedergabe starten; bei Ertönen des Signaltones drücken von 'ENT'

BS:

H # L 1000 1030 Wird das Programm fehlerfrei gelesen, wird auf dem Bildschirm das Quittungesymbol '#' ausgegeben. Beim Auftreten von Fehlern beim Einlesen ermittelt der Rechner die fehlerhaften Prüfsummen und gibt die Adresse des letzten Speicherplatzes des fehlerhaften Blockes aus, z. B.

```
# L 1000 1030
CS<1020
```

Sie haben nun das Programm ohne Fehler eingelesen. Starten Sie es mit dem J-Kommando. Sie merken, das Programm befindet sich wieder im Speicher.

Sie haben also gelernt, den MRB Z1013 in Betrieb zu nehmen und ihn zu bedienen. Wie der Z1013 arbeitet, was er noch bietet und was man alles mit ihm machen kann, erfahren Sie in den nachfolgenden Teilen des Handbuches zum MRB Z1013.

1.4. Wichtige Hinweise zur Beibehaltung der Reparaturfähigkeit

Beim vorliegenden Gerät handelt es sich um eine komplexe mikroelektronische Baugruppe. Eine Prüfung und Reparatur ist nur computergestützt möglich. Das erfordert bestimmte Eigenschaften der Leiterplatte:

Jegliche Änderung von konstruktiven und elektrischen Werten (Änderung der Leiterplattenkontur, Anbringen von anderen bzw. zusätzlichen Steckverbindern, Austausch von Bauelementen, Nachrüsten von Speicherschaltkreisen, Schaltungsänderungen usw.) bringen den Z 1013 in einen nichtreparaturfähigen Zustand.

Deshalb ist der Z 1013 im Reparaturfall im Originalzustand abzugeben. Eine nach der in der Bedienungsanleitung (s. 1.2.4.1.) angebrachte Tastatur ist dabei zulässig. Wollen Sie auf einen steckbaren Anschluß Ihrer Tastatur nicht verzichten, ist Ihnen als einzige Ausnahme das Anlöten einer Buchsenleiste BuL 202-26 TGL 29331/04 gestattet.

Eingriffe (außer den genannten Tastatur-Maßnahmen) durch den Kunden führen selbstverständlich zum Erlöschen der Garantieansprüche. Zur Wiederherstellung der Reparaturfähigkeit werden kleine Änderungen zu Lasten und auf Risiko des Besitzers rückgängig gemacht. Läßt sich die Reparaturfähigkeit nicht wieder herstellen, so kann keine Instandsetzung im VEB Robotron-Elektronik Riesa durchgeführt werden.

1.5. Technische Daten

Mikroprozessor:	U 880
Festwertspeicher:	2 KByte ROM Betriebssystem 2 KByte ROM Zeichengenerator (96 Ziffern, Buchstaben und Sonderzeichen, 146 Grafikzeichen)
Arbeitsspeicher:	16 KByte dyn. RAM (Z1013.01) bzw. 1 KByte stat. RAM (Z1013.12) Anwenderspeicher 1 KByte Bildwiederholspeicher
Speichererweiterung:	bis max, 64 KByte über Systembus möglich
Ein- und Ausgabe:	8 Kanäle eines E/A-Tores des E/A- Bausteines U 855
Tastatur:	Folienflachtastatur mit 4x8 Tasten (Ziffern, Buchstaben, Sonderzeichen, Steuertasten)
Bildschirmsteuerung:	Anschluß eines Fernsehgerätes über Antennenbuchse (Bereich I / Kanal 3); Nutzung des BAS-Signals möglich; keine Farbe; Bildaufbau 32 Zeilen x 32 Zeichen
Magnetbandinterface:	Kassetten- oder Spulentonbandgerät; Übertragung diphasenkodierter Signale; Eingang U = 60 bis 100 mV Ausgang U >= 120 mV;
Stromversorgung:	externe Zuführung von 12V/1A Wechselspan- nung; interne Erzeugung und Stabilisierung von +5V, -5V und +12V
Erweiterungs- möglichkeiten:	über Systembus (K 1520-kompatibel) sowie PIO-Anwendertor
Programmierung:	U 880-Maschinenkode
Abmessungen:	215 x 230 mm

Abb. 1.1. Anschlußvorschrift und Aufbauvorschlag für Z 1013

Abb. 1.3. Beschriftung der Tastatur